

Alexandra Danciu, Lecturer PhD. Eng.

Faculty of Civil Engineering - TUCN

Topics

- 1. History of Network Arch Bridges
- 2. Concept
- 3. Bridges around the world
- 3. Case study

History of Network Arch Bridges

? Network arches?

Per Tveit, dr. Eng, Docent Emeritus, Norway, per.tveit@uia.no

http://home.uia.no/pert/index.php/Home

History of Network Arch Bridges

General recommendations

- 1. The arch
- 2. The hangers
- 3. The lower chord

The arch

- -steel, often circular
- American wide flange easy to find
- Longer spans box section

b/t = 31.25, A=69696 mm^2

The arch shape

Arch rise

15 - 17 % of the span

The hangers

- Wires or rods
- No compression
- Hangers can relax network ≠ truss

Increase in the bending moments

The hangers

The hangers

The radial arrangement

The hangers

Φ = 40-60mm Protection

Lower chord = deck

Lower chord = deck

Fig. 28. Åkviksound Bridge. Designed in year 2001.

Why?

Fig. 29. Steel weight in various arch bridges.

Comparison of weight per m² of useful bridge area

Structural steel incl. prestressing steel	100%	Reduction	58%
Reinforcement	100%	"	34%
Concrete	100%		24%
Min. weight to be moved during erection	100%	"	46%
Pillars are the same for both bridges	100%	"	33%
Savings in cost are probably 35 - 45% per m ² of useful bridge area.			

Fig. 7. Bridge at Steinkjer, Norway, built 1963-1964

Fig. 15. Fastening of a hanger to the arch.

Fig. 16. Joint in wind-bracing.

Fig. 13. Details in arch at Steinkjer.

Fig. H5. The Bolstadstraumen Network Arch seen from the south

Waikato River Network Arch

Figure 1. Waikato River Network Arch. Span 100 m. Built 2010. Opened 2011.

Fig. 40e shows a two track railway bridge spanning 100 m designed by Brunn and Shanack

Fig. 40f. Reinforcement for a tie in the railway bridge in fig. 40e

TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

Fig. 40m. Shows an early suggestion by Prof. Marx for a cross-section of the railway bridge over B6 at Halle

NETWORK ARCH BRIDGE OVER THE RIVER LUZNICE (Czech Republic) Built 2005 Designer: Ladislav Šašek, PhD, Mott MacDonald, Prague

Fig. 96a. Longitudinal section

Fig. 101. The Brandanger Sound Bridge was lifted onto the pillars on the 7th of September 2010

THE BRANDANGER BRIDGE IS THE WORLD'S MOST SLENDER ARCH BRIDGE

TROJA BRIDGE IN PRAGUE

TECHNICAL UNIVERSITY

Fig. 4 Precast transversal beams stored on the site prior to assembly

"Palma del Río" bowstring arch Bridge. Córdoba. Spain.

2.50

5.00

2.25

CANTILEVER RIB EVERY 5,00M.

TECHNICAL UNIVERSITY

2.30

2.00 1

TRANSVERSE RIBS EVERY 5.00 M

2:30

2.00

5.00

"Deba" bowstring arch Bridge. Guipuzcoa. Spain.

Blennerhassett Island Bridge , 268m

Fig. 5 - Rib Bracing

The arch – HD 400x634

The hangers – Full locked coil strands

The model

Live load: LM1 + pedestrians 3 kN/mp - 1 sidewalk

Load cases:

- Dead load
 - Structure
 - Asphalt, railings, etc.
- Live load
 - LM1 TS + UDL
 - Pedestrians
- Wind
 - Wind x
 - Wind y
 - Wind z

Load combinations:

- Dead load
 - SLS
 - ULS.
- Dead + Live+Wind
 - SLS
 - ULS

TECHNICAL UNIVERSITY

Hangers – tension vs no tension

Tension in the hangers vs. no tension - deflection - dead + live

Tension in the hangers deflection - TS vs UDL

Forces – tension

- Axial force in the **TIE** + bending moment
 - dead load

TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

Forces – no tension

- Axial force in the **TIE** + bending moment

- dead load

Forces – tension

- Axial force in the **TIE** + bending moment

- DEAD + LIVE

Forces – NO tension

Axial force in the TIE + bending moment
DEAD + LIVE

Forces – tension

- Axial force in the **ARCH** + bending moment

- DEAD

- Resultant Shear	
	Shear V2
	-92.791 KN at 0.00000 m
Resultant Moment	u .ua
	Moment M3
	-313.0838 KN-m
	at 0.00000 m

Forces – NO tension

- Axial force in the **ARCH** + bending moment

- DEAD

Forces – NO tension

- Axial force in the **ARCH** + bending moment

- DEAD + LIVE

Forces – tension

Axial force in the ARCH + bending moment
DEAD + LIVE

LM1 – static vs moving load

Deformed shape – relaxed hangers

Dead

Dead + live

Welcome to my homepage

The network arch bridge is an arch bridge with inclined hangers. Some of the hangers cross each other at least twice.

If you are not familiar with network arches and have 4 minutes, you can read the first page of <u>The</u> <u>Network Arch</u>.

If you want more information you might start reading Preliminary Design of Network Arch Road Bridges with two examples spanning 93 m and 120 m. You can find it <u>here.</u>

If you would like to have a good general updated knowledge on network arches, read "<u>On Network Arches</u> for Architects and Planners".

There is a lot of information in the 18 pages in "About The Network Arch". It can be found here.

A lot of information on network arches can be found <u>here</u>. These 15 pages were presented at NSBA World Steel Symposium in San Antonia, USA, November 2009.

If you are looking for information on a specific piece of information, it might be best to look at the index on page 2 of "<u>Systematic Thesis</u>"

Bibliography http://home.uia.no/pert/index.php/Home

Thank you for your attention! Questions?

