

Dynamics of Bridges Under Moving Loads

(Past, Present and Future)

Prof. Ing. Ladislav Frýba, DrSc., Dr.h.c.

Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prague

Contents:

Introduction
 Past
 Present
 Future
 Conclusions

1. Introduction

First railway bridges in England

First experimental and theoretical papers by Stokes (1849) and Willis (1849)

Important progress by Timoshenko, Inglis and Koloušek

steam locomotives $F(t) = F_0 \sin \Omega t$

Steel bridge, l = 56.56 m

2. Past

- International investigations by ORE, ERRI and OSŽD
- Dynamic characteristics of bridges

First natural frequencies of bridges

Logarithmic decrements of damping

steel

concrete

Cross girder effect

Sleeper effect

Theoretical model

$$-I \frac{d^2 \overline{\varphi}(t)}{dt^2} + \sum_{i=1}^2 (-1)^i D_i \left[Z_i(t) + Z_{bi}(t) \right] = 0,$$

$$-m_3 \frac{d^2 v_3(t)}{dt^2} - \sum_{i=1}^2 \left[Z_i(t) + Z_{bi}(t) \right] = 0$$

$$P_i + P_{3i} - m_i \frac{d^2 v_i(t)}{dt^2} + Z_i(t) + Z_{bi}(t) = 0,$$

$$+Z_{bi}(t) - \overline{R}_i(t) = 0; \quad i = 1, 2,$$

$$EJ\frac{\partial^4 v(x,t)}{\partial x^4} + \mu \frac{\partial^2 v(x,t)}{\partial t^2} + 2\mu \omega_b \frac{\partial v(x,t)}{\partial t} = \sum_{i=1}^2 \overline{\varepsilon_i} \overline{\delta} (x-x_i) \overline{R_i}(t).$$

Effect of the speed

ORE experiments (DB, SNCF)

DB steel bridge, l = 19.6 m, 200 km/h

Stochastic concept

 $F(t) = F + \varepsilon \dot{F}(t),$

$f(x,t) = \left[p + \varepsilon \dot{p}(s)\right] \left[1 + \dot{r}(t)\right]$

3. Present

Resonant vibration

SNCF bridge, *l* = 38 m, TGV, 192 km/h

Theoretical idealization

$$EI\frac{\partial^4 v(x,t)}{\partial x^4} + \mu \frac{\partial^2 v(x,t)}{\partial t^2} + 2\mu \omega_d \frac{\partial v(x,t)}{\partial t} = \sum_{n=1}^N \varepsilon_n(t) \delta(x-x_n) F_n$$

Vibration of a steel bridge at low and resonant speed

Effect of the speed on deflection and bending moments

steel bridge, l = 5 m

Effect of the speed on vertical acceleration

concrete bridge, l = 10 m

Stress spectra

stress range

 $\Delta \sigma = \sigma_{\rm max} - \sigma_{\rm min}$

Stress spectra for steel and concrete bridges

Stress ranges

Effect of the speed

concrete bridge, l = 5 m

Critical speeds

10

$$c_{cr} = \frac{d f_j}{k}, \quad j = 1, 2, 3, ..., \quad k = 1, 2, 3, ..., 1/2, 1/3, 1/4, ...$$

$$c_{cr} = \frac{2lf_j}{j}, \quad j = 1, 2, 3, ...$$

4. Future

Beam coupled with a string

$$EI\frac{\partial^{4}v_{1}(x,t)}{\partial x^{4}} - N_{1}\frac{\partial^{2}v_{1}(x,t)}{\partial x^{2}} + \mu_{1}\frac{\partial^{2}v_{1}(x,t)}{\partial t^{2}} + k\left[v_{1}\left(x,t\right) - v_{2}\left(x,t\right)\right] =$$

$$= \varepsilon\left(t\right)\delta\left(x-ct\right)F$$

$$-N_{2}\frac{\partial^{2}v_{2}\left(x,t\right)}{\partial x^{2}} + \mu_{2}\frac{\partial^{2}v_{2}\left(x,t\right)}{\partial t^{2}} + k\left[v_{2}\left(x,t\right) - v_{1}\left(x,t\right)\right] = 0$$

At $\alpha = 0$: $v_1(x) < 1$ for $B_1^2 < A_1^2 A_2^2$ $v_2(x) < 1$ for $B_2^2 < A_1^2 A_2^2$

5. Conclusions

- Dynamic effects on bridges rise with increasing speeds of trains
- The dynamic response of concrete bridges is a little lower than steel ones due to their different mass and damping ratios
- Stress spectra present important data for the assessment of bridges at fatigue
- Vertical accelerations of bridges may be a limit state for the design of new high speed lines
- The diminishing of bridge dynamic response could be achieved with dampers or by interconnection of prestressed beams with pretensiled strings

